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: ABSTRACT -
The. breedlng method has been used" to generate perturbatrons for ensemble

forecastlng at NMC sin¢e December 1992. Atthat time a single breeding cycle with a pair of
bred ‘forecasts was, lmplemented ‘A combination of bred perturbations and Iagged"

. forecasts provided a daily set of 14 global forecasts valid to 10 days. In March 1994, the

ensemble was .expanded to 7 rndependent breedrng cycles on the new Cray C90
-supercomputer, and the forecasts extended to 16 days Thrs provrdes 46 independent-
" global forecasts valid for two weeks every day. , : :
_ - For efflcrent ensemble forecasting, the initial perturbatlons to the control analyS|s
- should adequately sample the 'space of possible analysrs errors.  We point out that the
~ analysis cycle is like a breedlng cycle: it acts as a nonlinear perturbation model upon the
evolution of the real atmosphere. The perturbatlon( i.e., the analysis error), carried forward :

~ inthe first guess forecasts, is ‘scaled down” at regular intervals by the use of observations.

_ -Because of-this, growing errors associated with the evolving state of the atmosphere
~develop within the analysis cycle and dominate subsequent forecast error growth. -
The breedlng method simulates the development of growing errors in the analysrs

. cycle A drfterence field between two nonlinear forecasts is carried forward (and scaled |

down at-regular intervals) upon the’ evolvrng atmospherrc analysis fields.- By construction, -

" _the bred modes are superposrtlons of the leadlng local (time dependent) Lyapunov vectors

: (Ll_Vs) of the atmosphere An rmportant property of the leading LLVs is that all random
perturbatrons assume their structure after a transient. period.. When several independent
breedlng cycles are. performed the phases and amplltudes of mdrvrdual (and regional)
-leading LLVs are random, which ensures quasr—orthogonallty among the global bred
modes from independent breeding cycles. : : _

' Off—llne experimental runs with a 10— member ensemble (5 rndependent breedrng o

- cycles) show that the ensemble mean is superior to an optimally smoothed control and to

- randomly generated ensemble forecasts, and compares favorably with the medium range

- double horizontal resolution control Moreover, a potentlally useful relationship between

‘ensemble spread and forecast erroris also found both in the spatial and time domain. The
improvement in skill of 0. 04-0. 11inACin forecasts atand beyond 7 days, together with the
- potentral for estlmatron of the skill, suggest that this system will be a useful operatlonal

forecast tool. The results and methodology dlscussed should be applrcable to the new .-

operatronal ensemble conflguratlon where 17 rndependentforecasts are pen‘ormed every .
. Thve two methods used' sofar to produce operational ense_mble :foreCasts, l._e.,

~breeding and the adjaint (or “optimal perturbations”). technique. applied at ECMWF, have

~several significant differences, but they both attempt to estimate the: subspace-of fast
. _growing perturbations: The bred modes are estimates of fastest sustainable growthand as

" such they represent probable growrng analysrs errors.” The optrmal perturbations, on the,. . 1 -

other hand, estlmate vectors. with fastest transient growth and are less likely to oceur.in

analysrs error frelds AmaJor practrcal drfference between the two methods for ensemble R
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-fOréCas{ingvi'sfthat b‘reked'in-g" is much simpler and far less e_xpénsiv‘e than the adjOiht
technique. = S - 3 S _




1. INTRODUGTION
It has Iong been accepted that running: an ensemb!e of numencal forecasts from
~slightly perturbed initial conditions can have a beneflcral |mpact on the skill of the forecast

by means of ensemble averaging (e g, Lelth 1974) Beyond providing a better estimate of
the first moment of possible future states, "the ensemble members also offer the possrbmty

 of estimating higher moments such as the forecast spread, which can be used as an

indicator of expected skill, and uItrmater, thefullprobablhty drstnbutron . Theoretically, the

probability of future states can also be computed through the Liouville equations (e.g.; . -

‘Ehrendorfer, 1993); if thelnrtlalprobabmty distribution is assumed to be known: However,
»computatronal and -other problems make’ the use of these. equations unfeasible for
- numerical weather pred|ct|onlntheforeseeabletuture The only currentpractrcal solution -
-to estimating forecast probablhtres is through ensemble forecasting: . -

" One-of the crucial aspects of an ensemble strategy is the generatron of rnrtral

“ perturbatrons These perturbations should realistically represent the span of pOSSIble

efrors in our control analysis. But since the number of ensemble forecast members is
strongly limited: by computational costs, it is essential that this limited . number of -
‘ perturbatrons optimtally sample the initial-error probability. dlstrrbutron : :
p In this paper we discuss some of the properties of the breedlng method used for
" ensemble forecasting at NMC srnce 7 December 1 992. Atthattimea system with a single
breeding cyclewas mtroduced and a combination of bred perturbations-and up to two—day -
lagged forecasts provrded 14 global predrctrons valid to 10 days every day’ (Tracton and -
Kalnay, 1993, ~Tothand Kalnay, 1993).. In March 1994, the ensemble was expanded to 7
independent breedrng cycles onthe new Cray CQO supercomputer and the forecasts were
extended to 16 days. Thrs configuration provrdes now 46. rndependent global forecasts -
valid for two weeks every day The results presented here were obtained in the process.of -
‘investigating . optimal strategies for the breedrng method, many of which have been 3
rncorporated into operatlons , ' S -
. “In sections 2 and 3 we dxscuss basrc questrons related to ensemble forecastmg In
sectrons 4 and 5 the charactenstlcs and several technical aspects of the breeding method
used at NMC for generatlng initial ensemble- perturbatrons are pesented Section 8 is
devoted to expenmental results. A short review about the operational |mplementat|on
’further dlscussrons and conclusrons are found in sectrons 7 and 8 : :

2 EN‘S‘EMBLE Fon'EcASTrNG AND'NONL!NEAR-FILTERING i

" Leith (1 97‘4) showed that averagrng the ensemble forecasts y|elds amean forecast '
superiortothe control forecast, aslongas the ensemble perturbatrons are representative of
~the initial probab/lrty dfstr/but/on of the basic flow around the control analysrs We lllustrate' .

: why thrs is the case by means of a very simple error growth example

' " Consider a traveling extratroplcal Tow. At the initial time, we assume that the center
of. the low is: analyzed W|th a small error EO We assume that the error wrll grow



_ exponentra”y at ﬂrst and that later nonlrnear effects will lead to error saturatron We can
therefore use Lorenz (1982) srmple error growth model:: | o
fdv/duav(t—v) R LI ' (‘r)'
‘where v(t)is the algebrarc forecast error measured atthe center ofthe system at trme z‘and a
_is the linear growth rate We can create a simple ensemble by adding and subtractlng a
perturbation P from the control analysis. These: perturbed analyses will have. an error of
Ep+P and EO—P respectively. If the.perturbation size is smaller than 25, one of these - -
perturbed analyses will be closer to the true atmospherrc solution than the control analysis, .
thoughwe do not know a prioriwhich oneitis. If the perturbed initial conditions are plugged

| into the error equatron (1) itis easy to see that the average of the two perturbed forecasts
has a smaHer error than the control at any forecast time & :

| Vcon(t)>(Vpos(U+Vneg(t))/2 : : t\ k_ | ,‘ " (2)

, where vpos(t) and- vneg(z‘) are the errors forthetwo perturbed forecasts. In Fig. 1, we show
- an example of the effect of ensemble averaging in this simple model. .
' We can generalize the above simple example' by assuming that we measure the

'errorv(z‘) overthewhole domain otasynoptrosystem Inthiscase, thernltlaterrorrsavector S

Ep of magnitude Eo, whose direction represents a partrcutar spatial distribution pattern. Let -
us assume that the error growth with time is still given by (1). If the initial perturbation is .
| ‘chosen alongthernrtrat errorpattern l.e., if Ppisparallelto Ep, then equation (2)is still valid.
Ensemble averagrng again provides a- nonlinear filter. that removes part of the growrng '
- error. "As we will see-later, much of this. rmprovement is a characteristic of ensemble '
‘averaging and cannot be: reproduced by simple‘spatial frlterrng

- On the other hand, if Py is a growing perturbation on‘hogona/ to B, ensémble

averaging will result in a worse torecast than the contral, which has noerror along Py. The
ensemble average will drverge from the control forecast due to the different nonlrnear
evolution of the +Pp and ~Pp perturbations, whose growth is also represented by equations
(1) and (2), and therefore it will have a larger total error-than the control. - This examplef
although admittedly very srmphstrc makes a strong case for the use of perturbations. that
- are realistic analysis errors as rnxtral ensemble perturbatrons Growrng errors that are not
' r_present in the analysis as errors may be counterproductlve for ensemble forecastrng, by

_mcreasrng the error in the ensemble average S ‘
” - We mention in passing that ideally one ‘would hke to use a large ensemble to
represent, with different probabrlmes all possrble states. of-the atmosphers, grven the
-control analysrs In this case the ensemble mean would provide at all lead times the best
‘estimate possrble for the future state of.the atmosphere in practice, however only a small

- number of ensemble torecasts canberun. As Leith (1974) showed, hedging the forecasts

toward climatology can give an additional rmprovement in some measures of forecast skill

o beyond that attarned by ensemble .averaging. In this paper (eXCept in section 6.4 where the -

- effect of: spatral smoothtng is studred) we restrrct our attentron to the |mpact of ensemble :
L averagrng ' : ’ ' Lo
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3 ERRORS IN-THE ANALYSIS L S SRR

tisclear that with the mrtral ensemble perturbatlons we must represent accurately
' the probabrllty dlstnbutlon ofthe state of the atmosphere about our bestestimate of the true

. state of the atmosphere the latest control analysis. The shape of this probablllty, B

distribution will depend on what klnd of errors we may have i in the control analysis. The ’
‘more likely an error pattern, the hlgher probablllty we should assign to the control analysrs
" plus and minus that partlcular error pattern This calls fora careful examlnatron of pOSSIble
~analysis errors '

'3 1 Random and Growrng Errors

A typlcal operatlonal analysrs pen‘ormed with Optlmal lnterpolatlon or Spectral '.

- Statistical Interpolation (see,” e.g., Lorenc, 1982, Parrish and Derber, 1992), is a weighted
‘average of (1) observational measurements and (2)a short—range dynamlcal forecast (first -
guess), started from the preceeding analy3|s lthasbeen long recognlzed thatthe resultrng
'analysxs is affected by random errors presentin observations: Recently it was also pointed.

o out that the repeated use of a model forecast as a first guess has a profound dynamlcal o

effect on the errors in the analysrs (Toth and Kalnay, 1993 Kalnay and Toth, 1994) ‘The -

analysrs cycle ganbe consrdered as the running of a nonlinear perturbation model uponthe -

~true state of the atmosphere ‘The perturbation amplitude. (i.e., the analysis error) is.Kept
- small by periodic “rescaling”, performed at each analysrs time, through t_he,use ot llmxte_d '
- observational data. : : SRR : .
. In‘such a nonlinear perturbatlon setup, |t is lnewtable that the random errors -
introduced at each analyS|s time will project onto growing modes of the atmosphenc flowat
later times. This is because the growing components of the error, by definition, rapldly
ampllfy while the decaying components quickly lose theif amplitude in the short-range, first
- guess: forecast (see section 4.1.) ‘And since the. observatlons underdetermine the state of -
~the atmosphere, these dynamlcally developing errors. cannot be removed at the next
analysis time: theiramplitude can only be reduced-(see, e.9., Frg 9 of Bouttier, 1994.) So. at
the start of the next short-range forecast in the analysrs cycle, dynamically developed k
errors are .present in the initial conditions ready to amplify again. .In other words, the
analyS|s contains' both random errors introduced by the most recent observations; and ~
~ growing errors associated with the instabilities of the evolving flow, dynamically generated
o (from earller rntroduced random errors) by the repeated use of the forecast ﬂrst guess

32 Whlch Type of Error is lmppn‘ant7

It we could follow the development of the errors present in the analy5|s we would

,"see that random errors, introduced- just at the latest analysrs time by observational - -
inaccuracies, will decay initially before prOJectlng, after one or two days, onto. growmg‘! '

‘modes of the evolvrng basic flow. Such an initial decay was apparent in early expenments

~in atmosphenc predlctabllrty (see e.q., Fig. 41 in Smagonnsky, 1969.) ‘Even if the random.

B gerrors are balanced they will stlll lnltlally grow very slowly or decay By contrast ”growrngA
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errors” wrll by deflnltron ampln‘y raprdly S0 that they are pnmanly responsrble for
short—range error growth ‘This means that even thoughthe growrng errors constitute onlya
portron ofthe total control analysis error field, their contribution is domlnant in the forecast
©.error development “Therefore one should focus on the growrng errors when creatrng

' ensemble perturbatrons ’

Another difference between: random and growing errors is that the dlmensmn of the

L space of possible random perturbahons is extremely large, of the order of the: number of
degrees of freedom of the model, whereas- the dimension of the phase space of fast -

growing perturbatrons is very much lrmlted bythe local (inthe phase space) dynamics ¢f the
 atmosphere. Sirice the full phase space of the random component of errors cannot be
- sampled well, random perturbatlons may actually degrade the quality of the ensemble by

_-prOJecttng at a later tlme on growing modes that were not initially- present as analysis

' control analysrs (see sectron 6.8.)"

grrors. This explains why ensemble forecastlng can never be as successful with random
'perturbatrons as with. estrmates ot fast growrng errors that are possrbly present in the_ " :

R | |
| ’4 LOCAL LYAPUNOV vecroas AND THEIR ESTlMATlON THeoueH BREEDING

Slnce the lmportant growing component of the analysis error occupies only a
relatlvely small subdomain‘in the phase space, and:it depends on the basic: flow, it'is
" possible to- compute estrmates of- possrble growmg analysrs errors through dynamlcal
methods, - | - v ~ S -

41 The Breedrng Method

, ~ Forthis purpose, Toth and Kalnay (l 993) proposed a method called breed/ng ofthe
- growing modes of the atmosphere (BGM). This procedure consists of the following simple -

steps: (a) add avery small, arb/trary perturbatlon to the atmospheric analysrs (initial state)

‘ ata given day ty {or . to any other basic state, such as a long model run), (b) integrate the -
model ffom both the perturbed and unperturbed initial ‘conditions for a short period {1ty -

(e.g. one day), (c) subtract one forecast from the other, and (d) scale down the difference .

field so that it-has the same norm (e.g., rms or rotational kinetic energy) as the initial
perturbatron This’ perturbation is now (e). added to the analysis. correspondtng to the .
following day #;, and the process (b)—(e) is repeated forward in time. Note that once the

_:.jfrnltlal perturbatlon is lntroduced in'step (a), the- development of the perturbatlon fleld is
- dynamically determlned by the evolving atmosphenc flow.

By construction, this method ‘breeds” the modes that grow fastest onthe traj ectory
taken by the evolving atmosphere in the phase space - One can decompose the initial
perturbation- P(to) into growing and- decayrng components. Let us consider the

. development of a small-perturbation on top of a nonlinear model trajectory (i. e., the:

difference between two nonlinear forecasts) At the.end of a short—range lntegratlon by "
definition, the relative contnbutron of the growing component wrll be larger while that of the .

decayrng component smaller than at initial time. And after a few cycles the decaylng, Vel

'_ 'component will become negltgrble



/

Note the srmrlanty between the breedrng method and the analysis cycle: in both
: cases, a nonlinearperturbation model is run with regular rescalrng Incase of breeding, the
- perturbation is run over the analyzed states. The perturbatrons are deflned with respect to
‘the analysis and then rescaling is done in.a deterministic fashion, so that stochastic (or -
decayfng) components are eliminated from the perturbatrons as discussed above. The
resultrng perturbations are determined purely by the' dynamics of the system. Onthe other
“hand, the analysis.cycle is run based on observed data. The perturbations here can be -
defined as the difference (error) between the analysrs/frrst guess and the true state of the
atmosphere (which is unknown to'us.)' In the first guess short range forecast the growing .
components of this error will still amplrfy However, at the next analysrs time observational -
~ data will be used to reduce the difference between the analysis’ and the true state of the
“atmosphere. The observed data ‘contains random noise which will be - penodrcally
. reintroduced into the analysrs Consequentlythe errors presentlnthe analysis, beyond the
growing. error connected to the use of short range forecasts as first guess fields, also

- contain a random or stochastrc component

42 : Lya,ounov vectors

TheoretrcaHy, the bred perturbatrons are refated to the local Lyapunov vectors
(LLVs) of the ‘atmosphere. - The Lyapunov exponents (,1,) have been wrdely used for
charactenzrng the behavror of srmple dynamrcaf systems _ _ - ‘
o Ai=limge 1t logs [pi(ti0)] - o @)

: where Jo, rs a linear perturbatlon spannlng the phase space of the system with orthogonal
vectors. Note that while “the first Lyapunov exponent. is uniquely defined at least for
- Hamiltonian systems, the rest ofthe spectrum is derived via a periodic reorthogonalization
-of the perturbatron vectors (see, e. g., Benettrn et al., 1980) and hence will depend on the

B frequency of reorthogonalization. The A/s can'be computed either for the whole attractor

(global Lyapunov exponents) or can be interpreted pornt——W|se where the growth ratiois -

-~ evaluated for an infinitesimal t|me interval at-t (local. Lyapunov exponents see, e. g.,
~ Trevisan and Legnanr 1995) "The Ieadrng Lyapunov exponents are.associated with

‘ predrctabmty properties of dynam|cal systems, namely how fastnearby trajectories diverge
(or converge) on the attractor. Mostimportantly, if a system has atleast one positive global

Lyapuriov exponent, its behavior i is'chaotic, i.e. arbitrarily close points on the attractor will: -
‘eventually separate into unrelated points (Wolf etal.,, 1985.). o : ‘
' When-the Lyapunov exponents are interpreted locally each of them can be
- associated with a perturbation vector, £ The’ first of these vectors, with the largest -
. exponent can be uniquely determined and represents a‘perturbation at time. b inta which

S anyrandomperturbat/onrntroducedrnflnrte time earlier, develops linearly. Thermportance"
- of this property of LLVs in: meteorologywasfrrst recognrzed by Lorenz (1965), who foundin -

~his expenments with a S|mple linear perturbation model that initially random perturbations - '_ .
. had a’ strong srmrlanty after eight days of integration.” Indeed, our breedlng experiments -

o witha state—of—the—art general circulation model indicate that oneneedsonlyafewdaysof - ;-

‘s rntegratron (3 4 days) in orderto get a good estrmate of the leadlng local Lyapunov vectors S




of the atmosphere These l_LVs are the vectors that grew asymptotlcally fastest dunng a
time period /eading to the analysrs Hence they are likely to dominate growing analysrs
errors’ and because of their sustalnable growth also the forecast errors.

43 ExtenS/on of Lyapunov character/st/cs /nz‘o the non//near doma/n :

; There is an extensrve body of llterature on the global and more recently onthe local
Lyapunov exponents of 5|mple dynamical models. These studies, however, use a linear
 tangent model approach and are concerned only about error growth.in a linear sense. In-
_* some studies, a regular rescallng of the perturbatlons also used in the breeding method,

has been applied. Rescaling in these linear methods, however, is used to avoid computer

overﬂow not to prevent nonllnearsaturatron (see e.g., Benettin etal.; 1976;- Shlmada and

_‘ Nagashrma 1979.) New aspects ofthe breeding method as proposed by Toth'and Kalnay

' (1993) are that perturbations are developed for a: (1) complex physical system in a (2)

- nonlinear tramework at a (3) high horizontal and vertlcal'reSOlutlon ‘and that it is (4).the. -

perturbation vectors (and not onlythe exponents) that are studled and used forreal world
practlcal applications. - - = ’

Nonlinearity plays a cruC|al role in complex systems where a host of. dn‘terent

~ physical processes, associated. with widely different growth rates and nonlinear saturation

. '\_(say, convectron) but this may be assocrated with processes with a- very low nonlinear
saturation level. For finite perturbation amplltudes these modes. would thus'be rrrelevant

- _and may even- decay. -Hence the bred modes can be considered as an extension of the

. .notion of LLVs into. the nonlinear perturbation domain: Note thatthe perturbation amplitude

is the only free parameter in the BGM method and that the bred modes, Just as the llnear ‘

'LLVs, are not sensitive to the type of norm used for rescaling.
‘ . Another new aspect of the breeding method is that local Lyapunov vectors, not only -
- global. Lyapunov exponents, are estimated. " This resuilts in the first computation of the
_ leadrng local Lyapunov vectors of the atmosphere with a comprehensrve nonllnear
perturbatron model lncludrng all physrcal parametenzattons :

L

4 4 Mu/trp/e Breedmg Cycles

When a breedlng cycle is started an arbltrary rnrtlal perturbatlon fieldis added upon
the control analysis. After three or four days of breedlng most of the ongrnally decaying -

: components in the perturbation disappear and the perturbatlon growth rate reaches an =~

.ﬂasymptotrc value around t.6 per day (wrth a perturbatlon amplltude of 1% in total |
cllmatologrcal ms varlance) After this time, the perturbations that remain are those that
_could produce the largest growth over the preceeding 3 days or so, given 'the initial-
perturbations. As seen from Flg 2,.the growth rate in a breeding cycle depends on the

" .amplitude of perturbatlons but is always larger than that obtained with other perturbatlon R
—methods such- as l\/lonte Carlo; Scaled Lagged Averaged Forecasting (Eblsuzakl and -

Kalnay, 1991 ) or dltference tlelds between short range forecasts \/ern‘ylng at the same time.-

!

. levels occur. A tradrtlonal linear approach may find the strongest instability of the system -



The growth rate and the shape (not shown) of the perturbatrons are largely :
rndependent ofthe rms amplrtude in the range of about 1—-10% of the natural rms vanabrlrty
: However if the perturbatron amplitude is reduced to less than 0.1% rms variance, then the
. _growth rate increases enormously, with-an amplification factorwell above 5 per day. Thisis
“because the fastest growing modes in the model atmosphere are, in fact, convective
modes (see Fig..3). not baroclinic modes. The tonvective modes, however, saturate at
much smaller amplitudes than.the estimated size of the: analysis errors (5—-10% of the rms
of the natural variability). The modes associated with convection are-also present atlarger
perturbatron amplitudes but are not detectable because they saturate at amplrtudes much
smaller than those of baroclinic rnstabllltres Thrs also explarns why convectrve modes.are
not dominant analysis errors. : - :
Since breedingis a nonlinear process the perturbatrons inthe' 1— 10% rms vanancef
' range, thOUQh primarily determined by the dynamrcs of the system, also- depend to some
extent onthe perturbation at previous times, namelyon how those perturbations prOJect on
certain growing modes, and on the small scale forcing convectron prowdes to th elarger
scales. This forcing (see Frg 3)is largely stochastic with respect to the baroclinic processes
“that domrnate perturbatron development in the amplrtude range of 1-10% rms variance. If
we start independent- breeding cycles with. different arbrtrary initial perturbatrons we find
- that after a transient period of about 3 days, the. perturbatrons in the different cycles are
”qurte similar (except for their phase and to some extent, their amplrtude which are -
arbitrary) but only over roughly half of the global domain. Table 1 shows the results
obtained using twenty rndependent breeding cycles. The local shape of the perturbatrons
were compared to-those observed in the perturbation #17 overthree selected regrons inthe
Northern and the Southern Hemispheres (see Fig. 4.) A+, —or a blankindicate whetherthe 5

' same perturbatron was observed with the same or opposrte srgn or whether a dn‘ferent o

~ perturbation was observed?, .
Inthe-areas wherethe perturbatrons are verysrmrlar thelargest Lyapunov exponent -

" must have a value much larger than the succesive Lyapunov exponents Over the restof . . \

the domain, different modes appearrnthe rndependent cycles, suggestrngthatthefrrst few
Lyapunov vectors have similar growth rates, and the appéarance of one or anotherin any-
" cycle'depends onthe details of perturbation evolution in that cycle a few days earher and
_also on the details of mstantaneous stochastic forcrng (convectron) _ :
From the above experiments it is clear that each global perturbatron pattern isa
superposition of a number of regional features or modes, _perhaps of the order of 10-20in

'+ each hemisphere, which, in turn, are pnmanly associated" with baroclinically unstable -

‘ regrons of the evolvrng basic flow.- And as the basic flow has many degrees of freedom, so
» does the global perturbation field. It follows. that the phase and amplitude of the regrona! .
- modes (and in case-there are competrng modes with similar growth rates, the’ modes

. ,themselves) in one area are 1ndependent of those'i |n remote areas. Thisi rnsures that the

. 2When the same comparison is. made wrth bred perturbatrons valrd on drfferent dates,
even as close as 2 days apart, there is almost no correspondence amongthe modes showrng
that the growrng modes crucrally depend on the basrc ﬂow and |ts recent evolutron g



‘bred global perturbatlons trom 1ndependent cycles are quasr~on‘hogona/ without i |mposmg

| -any-constraints.
i summary abred global perturbatlon isa superposrtlon of. reglonal modes, each of

. which lsacomblnatlonoftheleadlng local (in phasespace) Lyapunovvectorsmthatareaof :

- the atmosphere. The weights on the md:vrdual local Lyapunov vectors are randomly
" assigned by the arbltrary initial-perturbation and the stochastic small scale forcing but are,
in-a statistical - (ensemble average) sense proportional to the l_yapunov exponents
- themselves The bred perturbatlons are therefore not unlque in a strict sense but only ina

‘statistical, ensemble average sense, ‘And the morelndependentbreedlng cycles we have,

" the better we can span the' space of possible fast growing analysis errors. Nonlinear

~ breeding hence canbe considered asa 'generalization of the notion of Lyapunov vectors for:

' complex nonllnear systems Because of nonlinear 1nteractrons and stochastic torcrng by -

convection, and because of the existence of many reglonal modes, different breedlng

. cyclesdo notconvergeto asrngle leading LLV but rather span the subspace of fast growing

perturbatlons that domlnate error growth at: the amplltude of the size of the perturbations. -
4.5 Opt/mal perz‘urbat/ons and /_yapunov vectors

‘There is another method to determlne tast growrng modes cf dynamical systems
This llnear method uses the lineartangent and adjoint of a full mcdel to compute the initial .
perturbations that grow fastest over a specified period, measured with a given norm
(Lorenz, 1985). Inits appllcatlonto ensembleforecastlng at ECMWF (see, e g., Molteni et

al., 1995), the fastest growing perturbations are determlned for a 36—hour forecast -

traj jectory created by the full model. The optlmal vectors (Wthh are also called the singular
vectors of the linear propagator). are those that amplify most over the optlmlzatron period,
given the norm and other possible constraints. We bneﬂy compare the LLVs with the

optimal vectors and thetr respectlve use for- ensemble forecastlng at NMC and ECMWEF.

4.5 a Theoretical consrderatrons _ : ,
- Inalinear framework all perturbatlons lntroduced into-a dynamical system will W|th "
time rotate into the dlrectlon of the LLV. This explains ‘why the leading. LLVs play such a
crucial role in linear. perturbatlon development The local Lyapunov exponent assocrated
‘with theleading LLV characterizes the fastest “sustainable” growth; faster growth can exist
_only forshort periods of time.. It follows that the LLV does not depend on. any norm or other '
v specn‘rcatrons it is'a general property of any. dynamical system. .
A The leadrng optimal vectors represent specific dlrectlons in the phase space in
“which perturbation growth is hlgherthan thatassociated with the LLVs. The super-Lyapu-
‘nov (or super—exponentlal) growth, however cannot be sustained for long since it results -

.from a one~time rotation of the initial vector mto the direction of the l[eading LLVs. The opti-. B |

- mal vectorcan be decomposed into two components: one along and one perpendicular to ‘
" the leadlng LLV. Atany moment dunng the development of the optimal vectorthe instanta- L

neous growth along the perpend/cu/ar direction is lower than that a/ong the LLV, Thesu-

per—l_yapunov growth is assocrated with a dramatlc rotatlon of the perpendrcular vector to-
. .\ . . P . . - : 3 . - - ‘

: ,L_'_"'-_w_" R



 ward the LLV whrch results in an "apparent” extra growth (Szunyogh et al., 1995)

In contrast with the LLVs; the optimal vectors strongly deperid on the specific choice
of nerm, optrmrzatron perrod and possible other constraints chosen for their definition (Vukr-
- cevicand Errico, 1990), rndlcatrng that they are much more partlcular features of a system =

- than the LLVs. : |

. 450Db Sources of super—Lyapunov growth . : , , =

v Super—Lyapunov (or’ super~exponentia| ) growth has been documented in several
‘modeling studies (e. g., Schubert and Suaréz, 1989; Royer etal.,, 1993.) As pointed out by
Lacarra and Talagrand (1 988) and Farrell (1 988) super——Lyapunov growth can result from
an initial optimal vector being introduced into asystem. Recently, however, other explana- -

tions have also been suggested. First, the local Lyapunov exponentvaries.onthe attractor

-and often assumes values well above the global Lyapunov- exponent (whrch is an integral
‘ quantrty overthe whole attractor), thus leading to very fast growth from time to trme (see, e.
g Vannrtsem and Nicolis, 1994.) Moreover, Trevisan (1993) showed that the Iogarlthm of

arrthmetrcally averaged different local growth rate values results in an apparent super—ex- )
* ponential‘average growth. This super—{.yapunov growth is a result of first averaging differ-- L

ent !ocal growth rates and then taking the Ioganthm of the average (and it drsappears when
another average error definition is. used in which the local logarithm vaiues are averaged
. drrectly ) Note that evenin the absence of perturbatrons along the optimal vectors, the arith- -
- metic averaging of the local Lyapunov exponents yields a super—Lyapunov growth rate. As’
" Nicolis etal. (1995) showed fora three—variable Lorenz (1984) model, this apparent super—
Lyapunov growth can be readily explarned bythe rmpact of the varrabrlrty of the LLVs on the-
_attractor within the averagrng process : |

“45c LLVs and optrmal vectors as analysrs errors :
Forthe application ofthe LLVs or optrmal vectors in ensemble forecastrng one hasto

T consrderwhetherthey represent possible (and probable) analysis/forecast errors, Kalnay

. and Toth (1994) showed that the bred modes are present in-the analysis | as errors with a -
“considerable amphtude This should be expected since any kird of error introduced into the

, analysrs cycle, unless’ completely removed, would rotate into. the drrectron of the bred -

[modes due to the dynamics of perturbatin development described above We recall that
‘the bred modes are an extensron of the Irnear LLVs toward which all perturbatrons rotate

- within a few days. . - : : o

The optimal vectors, however ‘would not srmrlarly arise through the dynam|cs of the -
system as analysis errors They can be introduced int6 a system. only through. specrat forc- -
~ ing, which, in case of. the analysis cycle, requires a special kind of distribution of random ;
“-observational errors. And since the number of degrees of freedom in the atmosphere (and
inits general circulation models) is very high; and the number of fast growing optimal-vec-
tors is very limited, we believe that it is unlikely that a random error pattern'would have a

strong prorectron on the Ieadrng optimal vectors.. The results of Ehrendorfer and Errico .

_f‘(1 995),; who' consrdered an extended spectrum of optimal vectors in a limited area model, .
: seemto support thrs COnJecture They found that only a smaH fractron of the leadrng optrmal_ ,

oo
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vectors have growth rates higher than one. It followsthat random perturbatrons would proj- -
ectpoorly on the leading optimal vectors Thisis alsotruefortheleadrng LLVs. However in
- aperturbation model like the analysis cycle random perturbations, by definition, ‘would nat-

“urally rotate into the direction.of the leading LLVs butnot toward the'leading. optlmal vectors
(which can arise only through special forcing.) S
The statement that the optimal vectors are not likely analysis errors may seem to
contradict the results of Rabier et al,, 1994, They searched for the initial vector that maxi-
‘mizes perturbation growth projecting at final time onto the 48~hour forecast error pattern.

‘ Theyfoundthatthe|nltlalvectorthatmaxrmrzes growthrnthatspecral direction has charac- B

: teristics similar to the optimal vectors Note, however, that Rabier et al. (1994)solveaprob-’

lem very similar to (but more specrtrc than) the general (or.unconstrained) optimization . "

problem ofMoltenr etal (1995): Thetlnal perturbatron vector (48— hourerrorpattern) actsas
an: addrtronal constraint in the same optimization problem. Given thé dependence of the'
‘ optlmlzatlon on the chorce of norm, itis not surprising that the resulting initial sensitivity”
| patterns of Rabier et al. (1994) have a similar structure to the optrmal initial perturbatrons
used for ensemble forecasting at ECMWF (Moltenr et al., 1995) T
We note again that the sensrtlvrty patterns (and also the optlmal vectors) are not
unrque in the sense that they depend on the norm-Used in their definjtion. 'In other words,
. thereis no unique way ‘of going back in time-in a drssrpatlve chaotic system like the atmo-
”,sphere In fact, very different initial vectors may vield similar end perturbatrons as dis-
cussed already above with respect to the leading LLV. (see also Zupanski, 1995.). The influ- .
ence.of the norm on optimal/sensitivity patterns is also apparent in the results of Qortwijn
~and Barkmeuer (1995). Qortwijn and Barkmeier- (1995) used an optrmlzatron technique
- similar to that of Rabieretal: (1994) except that their final targetperturbatlon patterns were
~ anomalies assocrated with weather regrmes They found that the initial perturbatrons opti-
. mally tnggerrng those anomalies were, to a large extent combinations of the leading un-
- constrained optrmal vectors. Their results suggest that no matter what the exact target per-
. turbation pattern is at final trme once the normis fixed, the initial optimized perturbations
~will have alarge prorect|on onthe- Ieadlng unconstrained optimal vectors that can produce
~ the fastest temporary growth through the specral rotatron of thelr component vectors in
phase space. : SR :
Inshort, srncethe optrmal/sensrtrvrty patterns are notunlque and they depend on the_ .
norm used, the questron whetherthey projecton actua/analysrs/forecast errors can only be =
_ tested through the use of high quallty observaz‘ronal data. ' s

45.d - Practrcal aspects ,
There are several practlcal dltferences between the breedrng and the optimal vec-

o tors methods as used at NMC and ECMWF respectlvely (1 Computatronal efficiency: the

- adjoint technrque is very expensive. whereas breeding is essentially cost-free, apart from

"‘runnlng the eénsemble forecasts themselves (see Fig. 6.) (2) Spatial resolution: breedrng
can be performed at full resolution whrle forthe: optrmal perturbatrons technlquethls iscom- -
- putatignally impractical. (3) Breedlng is performed wrth thetull nonlrnear model wrth physrcs .



= whlle the optlmlzatlon is currently done with a tangent llnear system with llmlted physical
parameterlzatlons (4) Spatial coverage the fastest optimal perturbations cover only'a
small fraction of the geographical domain with relatively large amplitudes and only overthe

~ NH (see Fig. 3.d,e,fin Moltenietal., 1995) ‘while with breeding, the fastest growing reglonal
modes are automatlcally determined for the whole globe’ (including the tropics and the
- Southern Hemlsphere) and not only for those regions with highest growth rate. (5) The
optimal vectors-are determlned for aforecast traj jectory, so that to the extentthe forecast is
not perfect, the modes determined will be sub—optlmal Incontrast, the l_l_Vs which provide
the fastest sustalnable growth forthe future3 depend only on analyzed data. '. '

5, ENSEMBLE PERTURBATIONS

, From the dlscus3|on about l_l_Vs above, one’ could draw the conclusmn that it does
- not really matter what initial perturbatlons are used for medlum— or-extended-range
‘predlctlons since all linear perturbatlons turn into very srmllar vectors after a few days of

- integration. However, one should keep in mind that ensembleforecasts just asthe control-

forecast, are non//nearlntegratlons Witha perturbatlon size srmllarto the estimated size of _
errorsin the analysis, nonlinearity becomesrmportant after abouttwo days and earlierthan

/ that in fast developing synoptic systems. It follows that in the ensemble perturbations, we
still. need to represent realistically the initial uncertalnty in the analysis, otherwrse as
- discussed in section 2, our ensemble will be suboptimal.” -
In this section we discuss several additional technlcal pornts about the breedlng,"
method which were- lnvestlgated in the process of lmplementlng operatlonal ensemble
forecastlng atNMC. : :

- 51 Reg/ona/rescal/ng , " . R 3

o The breedlng method was orlglnally used at Nl\/lC wrth hemlsphencally determlned
rescallng factors (Toth-and Kalnay, 1993). Dependlng on the hemispheric rms magnitude -
of the Pperturbation, a constant factor was applied over each hemlsphere and a llnearlyr

‘interpolated value was usedin the tropics in the rescaling. While this method isvery good to
study the instabilities of the atmosphere as they are represented inour numencal models, it
‘may not be optlmal for ensemble forecastlng The perturbations should reflect not only the
shape, but also the size of analysrs errors. Consequently, we want to have larger reglonal _
perturbation amplltudes in - regions - sparsely observed, and vice versa.. - With
hemispherically fixed rescallng, the perturbation amplitudes will be largest in the areas of

. strongest lnstabllltles While these areas are generally over the poorly observed oceans,

they do not necessarily correspond to the reglonally dependent uncertainty in the analysis. ’

To estimate the geographlcally dependent uncertalnty in the analysrs we ran two

 independent analysrs cycles for a 30—-day period in Aprll May, 1992. The cycles were o

" 3Note that dynamlcal systems behave contlnuously in time. The LLV reflects this tlme ‘

‘ contlnurty ‘Whatever vector provided the. maximum sustainable growth over the segment of
trajectory leadlng to current tlme will provrde the' maximum growth forthe future too



~identical eXCeptthat inone of themthe first gu'es's field was an ensemble average of two first

guesses, perturbed by bred modes with - positive and negative signs. The two analyses
'gradually diverged from gach otheruntll afew days later, the difference’saturated. Beyond
this time, we took the average of rms difference fields between correspondlng pairs of
' analyses. The ~500 hPa average difference field in the streamfunctlon scaled sothat the-
global average is one, and-smoothed with a Gaussian filter on a sphere (Jim Purser4 pers.

o comm., 1993) equrvalenttoTG—T?(about2000 km) resolution, is shown in Fig. 6. Overthe

Northern' Hemisphere; the domlnant features of the analysis uncertainty field are the

minima over North America and Eurasia, especrally overthe eastern part of the continents, .~

and the high: values over the Pacific ocean. This corresponds well to the good rawinsonde
coverage. overthe continents. Due to the'use of dynamlcal first guess, the. |ntormatron from ©
the observations is transported” eastward resultlng in mlnlma overthe eastern part of the '

v contlnents

While there isa hlnt ofa srmllar behavror inthe Southern Hemlsphere east of Afrlca o
and over eastern Australia, there is more -zonal symmetry, and the amplitude of the .
uncertalnty increases’ poleward Such behaviour is also consistent. wrth the uniform B
observational coverage provided -by satellite temperatures and by’ the tast growth of
' ’perturbatlons in the strongly baroclinic southern hlgh latitudes. :
Notethat with the above procedure we can estimate the amplitude otgrowmg errors
lnthe analysrs which, as we discussed in section 3.2, are-assumed to be more importantin
ensemble forecasting. Optlmal Interpolation. (O could also be used to; estimate the
. distribution of the analyszs errors (Gandin, 1963), but such estimate is very dependent on
the assumed error covariances for the forecast and the observations. In addition, the Ol
estimate would not properly account for the growing component of the error. Therefore we
- believe the Ol estrmate would be Iess reliable than the emplrlcal procedure we have used
here.” * : : : ‘
In a breeding cycle speCifically.modltied for enSemble perturbatlo'ns we determine
the scaling factor as “a function of horizontal location. The perturbatlon amplltude is -
measured and rescaled reglonally in a smooth fashion, to a level correspondlng to the
- values shown in Fig. 6. At points where the- perturbation amplitude (globally scaled to1)is
below that in Fig. 6, no rescaling is applied. -So a perturbation travellng into a poorly'.
observed oceanic areais allowed to growtreely, while those reaching a ‘well observed area
- arescaled back to the size of the estlmated analysis error. Since the regional rescaling is -
: done in asmooth fashion, most of the balance naturally presentin the bred perturbatlons is
preserved With regional rescallng we still retain the capability of changing the overall
global or hemlsphenc amplltude but the smoothed relative geographlcal dlstnbutlon is feft -

- intact.. . : - . /

, Medxum —range ensemble forecasts pen‘ormed with the breedlng method modlfled ,
. for reglonal rescaling showed an lmprovement in skrll over the Southern Hemrsphere and, )

4By using this: spectral fllter we avoid- the allaslng problem -associated with simple |

truncatlon in wavenumber space. Dn‘ferent flltenng characterlstrcs are descnbed in terms of e

: equrvalent” tnangulartruncatlon e SR
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6.1 Measures of'en'semble qda//'tj/

: N

B the troplcs (compared to the hemrsphencally rescaled perturbatlons) whlle there was no
change over the Northern extratropics. . We also tested applying the regional rescaling
outside of the breedmg cycle, to modify only the initial ensemble perturbations, but found L

~that. larger changes were necessary after each cycle and that the forecast results were not -
as good B : - o : : .

5.2° Center/ng the ensemb/e around z‘he contro/ analysrs : f

Slnce ourbest. estrmate otthetrue state ofthe atmosphere lsthe control analysis,we
must center the ensemble perturbations around this field.- ‘This can be easily done by
addlng and subtractlng the same perturbatlon to the control analysrs (e.g., Ebistzaki and .
Kalnay, 1991) In this setup, 2n perturbatlons are denved fromn mdependent breeding -
cycles (or from other arthogonal vectors.) *However, a case can be made for using each
perturbatron only once, thus possrblyrmprovrng sampling (J Purser, pers..comm. 1992) E

We tested this hypothesrs by averaging 2n independent perturbations and then removmg o

their average from each lndlwdual perturbation vector. The resulting medlum—range

- _ensemble integrations, h.owever had a significantly inferior forecast skill as compared to v
the identically sized paired ensemble setup: the improvement upon the control forecast | .-

.Oobtained with the ceritered single perturbatlons was less than two thirds.of that obtained

- with the ensemble of positive and. negatlve pairs of perturbations (see Table 2:) Thisresult
- underlines the inherently nonlinéar nature of ensemble forecasting. Thelmpllcatlon is that 7

the nonllnear ensemble tllterlng mechanism discussed in Section 2 is not as: effectlve if the
perturbatlons though centered initially in a llnear sense, are not palred

6 ENSEMBLE FORECASTING RESULTS

“In thls section we wrll give an. overvrew of ensemble forecastlng experrments
performed in order to test possrble operatlonal oonflguratlons All experiments were done

© with aT62/18 levels version of the NMC Medium: Range Forecast (MRF) model (Kanamitsu -

etal., 1 991) The period usedin these experiments is the 40 days between 6 May 1992 and

14 June 1992 (or a subperiod of it, where noted). " Unless mentioned otherwise, =

lO——member ensemble forecasts are ‘evaluated. The initial ensemble perturbations were

“derived from ‘5 lndependent breedlng cycles with regional rescaling. -To center the

~ensemble mean on the control analysis at initial time, each of the five perturbatrons was

“"both added to and subtracted from the analysis. - The. qualrty of the ensemble forecasts is

estimated using two measures: the sklll of the ensemble mean forecast and the spread of -

“the ensemble
\

_ At any lead tlme members of the ensemble can be averaged The mean ensemble
forecast is then verified against the correspondlng analysrs much the same way as the

- control forecast As a measure of skill, we use the. forecast/analysrs pattern anomaly -

correlatron (PAC) measured aver. three separate belts over the globe the northern and" g
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southern hemrsphere extratroprcs (20 -80° latrtude betts) and the tropics. (+/— 20° Iatrtude)
Al scores are computed for the streamfunction field at a sigma layer close to the 500 hPa
~ height level. To compute the anomalies, the observed climatology is used. RMS errors
~ were also computed but are not reported here because they led to identical conclusions as
the PACs. Forecast PACs for different. types of ensembles are compared-to those for the
control forecast to see rt they represent an rmprovement due to nonhnear ensemble
trtterrng o ‘

' “The spread of the ensemble is determined as the average of the drh‘erence f elds -

. _ between the rndrvrdual ensemble forecasts and the ensemble mean. The difference at

'each grid pointis. defrned as the square root of the kinetic energy in the drfterence (orerror)
field. The spatrat distribution of the spread is consrdered as a predrctlon for the spatial
distribution of the actual errorin the control forecast which is measured in the same way, in.
units of square root of kinetic energy Attersettrngthe mean of both theforecastspread and -
- obsetved error trelds to zero, their correlation “is computed - (spread/error PAC.)
Spread/error PACs arecomputed onlyin the T3-T15 range of equrvalent spatial resolution )

~using the spectral filter mentioned above (Purser, pers. comm.). Time correlations |
- between spread and error statistics are also computed (in whrch case the spatral mean of

'the spread and error fields is not removed ) L

. ‘6.2 S/ze of the rn/t/al pen‘urbatron

In the section on regronal rescalrng (5 t) we mdrcated that the overall size of the
- .rmtral perturbatrons is an important parameter that hasto be’ chosen to reflect the size of
initial error in the analysis. An estimate ot the analysrs error can be derrved from optimal
" interpolation analysrstechmques (see, e.g., Gandin, 1963, Buizza, 1994) However, since

' these estimates are subject to the statistical approxrmatrons made within theianalysis
scheme, we attempted to optimize the overall perturbation size experimentally by verifying -

. ensemble means.for. ensembles rnrtrated with different initial amplrtudes for the.bred = .

perturbatrons The perturbatron size is’ measured on the ~500 hPa streamfunction field. -
- We note that the wintertime NH natural rms variability of the streamfunction treld is around
8500000 m2/sec (while it is around 80 m for geopotential height.) :
' To. estrmate the optrmal srze of the initial. perturbatrons we pertormed tests wrth '

o differentvalues between 3and20% ofthe NH winter variability forthe NH and 6 and 40% for

the SH respectrvety, and.recorded the skill score for the mean of the different ensembles ;
‘Since at T62 resolution much of the small perturbatrons develop linearly in the first 24 hours -
time range, the ensemble mean of perturbations equal to or less than 10% of the rms
~ variance (standard devratron) is not-appreciably different from the .control at one day.

_Though at this short lead time the skill of the ensemble mean cannot be directly used to

“determine the optimal perturbation srze5 itis importantto note that perturbed forecasts with: o

10% initial “error” for the NH and 20% for the SH diverged from the control as much as the
o 5The: srgnal is hard to detect because the errors in the vern‘yrng analysrs are not much
smaller than the short—range forecast errors. Had we used observational data for vern‘rcatrons

. rnstead of analysrs fields, we may have been able to frnd a srgnal even.at very short range.

DSV I



control ‘forecast diverged from' the verifying analysis (not shown), suggesting that the
- optimal perturbation size is around this magnitude. This agrees well with other estimates
“for the errorin global analysis fields. Kalnay etal. (1 993) found that the difference between
“independent 500 hPa height analyses from various centers is between 7 and 16 m forthe -
- NH and between 12 and 18 m for the SH. P. Caplan (1994; personal communlcatlon)'

- estimated differences in the same range, with the SH uncertainty being about double of that
~ for the NH. These estimates, along with other information such asimprovement in forecast o
skrll suggest that the: quality of our atmospheric analysrs has been considerably lmproved :

© sincethe mld 1980's' when Daley and Mayer (1 986) estlmated the global analysrs error to

. ".be between 15 and 20 m at 500 hPa.

o n Table'3 we.show the results of using dlfferent perturbatlon srzes for day 3to 9,
..companng them with perturbations ofsrze 10%forthe NHand 20% forthe SH. Wefind that, -

- forthe NH, at day 3 an amplitude of 7. 5% is slightly better than 10%, whereas at day 9, '

12.5%is better. Thisincreaseinthe optrmal initial size with forecast length is also observed
~inthe SH: at day 3 a-size of about 25% is better, whereas at day 9 a size of 30% is more - -
effective i in increasing the skill of the ensemble average ‘

Ina perfect model environment, the optrmal perturbation size should not depend on
lead time. However, our maodels are imperfect, which means that forecast errors dre
- growing not only due to theinitial difference but also due to modél deficiencies (Reynolds et
al., 1'994)' Part of the model generated errors project.on’ growrng modes and act like:
ampln‘ylng errors due to the initial uncertainty, whereas others appear asa forecast bias.
The model errors that prOJect onto growing modes can be dealt.with, to somie extent, asan -

: extra amplrtude term-in_the initial error field, -explaining why the optlmal perturbatlon o

_amplltude increases sllghtly with | lncreasmg lead. time.

- Based onthe above results we have frxed the initial amplltude of perturbatlons inthe
remainder of this study at 12.5/25% rms Standard deviation for the NH/SH respectively.
‘Note that this amplitude is largerthan optimal for short lead times but is around optimal for
the medrum and extended range. : '

6.3 ' Ensemb/e mean forecasts T
| -Fig. 7 shows the PAC scores for the control and ensemble mean: forecasts for the
experimental penod Flrst we should note that, ensemble averaging has-a greater impact
- over the winter (in this case the SH) than over the summer hemisphere.” This is the case
“probably -because in winter,. barocllnlc dlsturbances are the sole major source of |
instabilities: These instabilities have a relatively long:life cycle, (few days) and a large
saturation amplitude: Consequently, baroclinic instabilities.are directly responsrble fora.
" large portion of. wintertime forecast errors. And since at T62 resolutlon these instabilities '
~are well resolved, the ensemblé based on these perturbatrons is very effective in f|lter|ng.7 '
outpart oftheforecast errorthatis dueto initial erroruncertalnty In contrast, the circulation -
~ inthe summeris more "local”in nature, both in space and time. Thisis also reflected inthe
fact that the summer circulation has more spatral degrees offreedom (see e g, Fraedrrchf :

- etal, ‘1995) Beyond large scale dynamrcs itis also strongly mﬂuenced by conveotlon N

N .
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which has a shorter life time and smaller saturation amplitude. It fo_llbwsthataIarger.portlon' o
~of the total error is left unexplained by baroclinic instabilities. As a cbnsequence our
‘ ensembles based prrmanly on baroclinic. lnstabllltles cannot provide asmuch lmprovement
in skill in the summer as they tan in the winter. -

As can be seen from Fig. 7 the skill for the control and ensemble mean at day 1 are
practically identical when verified against the control analysrs (see also footnote 5). ’
" However, beglnnlng day 2 the ensemble mean develops an advantage. over the control
. -forecast that becomes appreciable by day 3 and reaches a substantial 0.07-0.11 by day 9.
- 1f we conisider 0.5 PAC as the minimum level of useful skill, ensemble forecastlng extends -
- predlctabrlrty by a day or so, out to 8 days over the NH and 7 days over the SHandthe
- tropics. Note thatthe lmprovements from ensemble averaglng are as Iarge in the tropics as .

they are over the summer hemrsphere extratroplcs : ,

The gain from ensemble forecastrng inthe medium and extended range Comparesv

~ favorably with the increase obtained by doubling the horizontal resolution: At day 5, the

difference between the scores obtalneduslng the NMC operational T126 model and a |

nearly identical, “parallel" T62 system is slightly below 0.02, averaged over 32 months of

. operations. The gain obtained by ensemble averaging with 10 members over the 40-day

experimental period is substantrally larger, although both procedures take about the same
. “computer time. We should point out that | increasing the resolution of global NWP models
~-has a clear benefit durlng the first few days of a forecast. (Tracton and: Kalnay, 1993).

L Runnlng ensembles at a lower resolution, however has a substantial advantage for the -

.range beyond 5 days where nonllneantles become important.. 'We mention here that
ensemble forecasting oan also be beneficial for the shorter range, as Iong asthe nonlrnear .
' »aspects of the flow are relatlvely well modeled and analyzed (see Brooks etal., 19‘95‘)

: 6.4 - Ensemb/e averag/ng vs spaz‘/a/ smooth/ng

St mrght be argued thatthe gain in skill from ensemble averaging may be domlnated -

, bysmoothlng resulting from averaglngthe dlfferentperturbedforecasts Fig. 8a showsthe
. verifying analysis for a. 9-day forecast started from 30 May 1982. A comparison of the .
- control forecast (8b) with the® 10~member ensemble average: forecast (8C) and their -
fcorrespondlng errors (8d and 8e respectively) suggests that ensemble averaging. does‘
~indeed have a smoothlng effect. Itis more appropfiate to call this effect ”frlterrng since it

~ depends on the flow, partrcularly upon the varying degree of similarity amongst the

- .ensemble members Ensemble’ averaglng results in a selective smoothing- of those
features that oannot be forecast with certalnty Consider, for example, the forecasts in Fig..

8 over.North America: The trough over the SE USis well predicted by the control and is
‘hardly changed by the 10~-member ensemble mean. The Southern portion of the trough’
predicted overthe West coast, however did not verify. The ensemble mean filtered out part

 of this system, resulting in smaller overall errors in this region. Undoubtedly, there are

: f'several other’ areas/oases where the ohanges in the.ensemble mean do not verrfy well but "
_-overall it still prowdes an lmprovement over the srngle control forecast = :



" To quantify how much of the improvement due to ensemble averaging is connected
‘to simple spatial smoothrng (ascompared to nonllnearfrlterrng) we performed experiments
" where both the control and the ensemble mean forecasts were spatxally smoothed till they

'reaohed their maximum PAC verification scores. - The results, presented i in Table 4, show

that not much smoothing is needed to maximize the scores inthe extratropics. Evenat9
days lead time, a truncatron of T20 has to be retained in the control while, as expected, the
~ ensemble average requires somewhat Iess smoothing. In the troplcs (not shown)- no
\ 'amount of smoothing improves the scores. The main result here is that the ensemble -
‘ ,average retains a considerable advantage (morethan 60%) overthe control even after both
fields had been optlmaHy smoothed :

65 Forecast of the s,oaz‘ia‘l distr/'bution of z‘he errors

Ensemble forecastlng should otfer more than an |mproved best estlmate of the’
evolutron of the atmosphere (ensemble mean forecast.) It shouldalso providethe meansto
~estimate higher moments, and ultimately'the full probabllrty distribution of the forecasts.: A
first step in achieving this goal is the derivation of an estimate of forecast reliability in the
, '_spatral domain. ldeally, we would like to know in whrch areas errors are more likely. We

‘have used the spatlaHy smoothed ensemble spread of the Kinetic energy introduced in
- section 6.1 for estimating the magmtude of the expeoted forecast-errors. Figs. 8f and g
show, for the same 9—day forecast example of the previous subsectron the .spatial -
-dlstrrbutton of the Kinetic energy of the error.and of the ensemble spread, respeotrvely.
Several lmportant aspeots of the error field are indicated quite realrstloally in the ensemble
spread field. Note, for example that the absolute maxima inthe error field over the two
~extratropics is well predxcted by the ensemble over South of Australia and over Eastern -
Asia. Several errorteatures turn out to be well predrcted in the subtrop|cs and tropics, as
“well: See, for example, the correspondence beween the actual and predroted large errors

over Western Sahara and East of the Hawaiian Islands: . ‘
, The spread/error PAC scores. based on the ensemble forecasts are drsplayed in
' Frg 9. The fact that the spread/error PAC is low at short lead times is dueto the presence of
" random errors in the initial conditions and verlfyrng analyses (see also Barker, 1991 and -
- Wobus and Kalnay, 1995). Since there is a strong zonally symmetric component’in-the .

errorfields, we computed the PAC of the spread/error both with (not shown) and withoutthe _

zonal mean lnotuded The spread/skrl! spatial ‘correlation is about 0.4 without the zonal

mean and is above 0.7 with the zonal ‘mean included. This. result is encouraging, . -

suggesting that ensemble forec:astlng can result xn sklllful predlctrons of the spatial -
dlstnbutron of the errors : : : '

6.6 | Forecasz‘ of z‘he z‘empora/ var/atrons in sk/// =

The ensembletoreoasts can also be used to predtct the vanatlons of forecast skrll (or" |
, ‘the rehabrlrty of foreoasts) in the time domain. This has been a subject-of consrderable
" research because of its |mportanoe for medium and extended—range foreoasts (e gy
.Branstator 1986 Kalnay and Dalcher 1987 Pa!mer and Tibaldi; 1988) lf_we can -
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, determrne apnor/ whrch forecasts are gorng to be most skﬂlful the utrllty ot extended range

forecasts can be consrderably enhanced (e.g., Tracton et al, 1989). Here we will test the

+ relationship in time between ensemble spread and error, both expressedin termsof klnetrc v

_energy as discussed above, for the two extratropics and for the tropics. The two time series -

were correlated for the test period of 40 consecutive daily forecasts started on 6 May 1992,

see Fig. 10. For the NH the correlation, except for the firsttwo days, is around the 0. 6-0.7

, level (The low correlatron at day one may be due to the presence of random errorsinthe
\analysrs ) The correlation for the tropics (except at'days 1 and 2) is lower than thaf inthe .

NH, nevertheless rt still exceeds the mark of statistical significance (.31 at the 5% Ievet) at

most lead times.. Over the SH the corre!atlon values. reach the level of stat|st|cal_'

“significance only.at days 2 and 9.

. . Except for days’ one and two, the scores over the NH are somewhat hlgher than |
o _those obtained in the operatlonal system designed by Wobus and Kalnay (1995) to predict
forecastsklll onaregional basis, based on control forecastsfrom drtferentcenters andalso

larger than those reported by Barker (1991) in-a T21, 2-layer. QG perfect model’

'envrronment Although the results presented in the last two subsectrons on forecast

- reliability in the spatial andtemporal domain -are subject {o more sampling vanabrlrty than =

those on ensemble mean predrctrons they indicate the ability of the bred ensemble to.

" successtully predrct higher moments of the forecast probabrlrty drstnbutron

-

6.7 Srz_e ofthe ensemb/e . S ,'

J

' r't'wa's' Leith- (1974) who flrst consrdered the questron of how many ensemble
members are needed to improve the skill of the control forecast by ensemble averaging.

~Using a srmple model he found that erght members are enough to realize most of the gain

‘attainable through ensemble averaging. Houtekamer and Derome (1995), also using a

perfect. model environment but with & 3— ~layer, T21, resolutron quasi— geostrophrc model,

basically confirmed Leith's results. Barker (1991), using. a setup srmltar to that of

Houtekamer and Derome; examined the effect of ensemble size on: the temporal'
correlatron between, ensemble spread and control skill. ‘We now consrder the same o
. guestion usrng a setup equivalent to the operatronal NMC ensemble system i
' ~In Fig. 11; the skill of the-ensemble mean, the skill in forecastlng the spatral error,\

~ pattern, and the temporal correlation between ensemble spread and control error are

displayed as a function of ensemble size between 1. and 40 members,  The gain from:

enlarging the ensemble is most obvious when going from 2 to 4 and then to 10—-member
ensembles, a resutt in agreement with earlrer studies. Regardlng forecast skill, only
“minimal’ rmprovement is obtalned beyond 20 members. However, in the temporal and

- spatial relationship between’ spread and errorthe improvement continues to increase even
upto 40 members From the shape otthese curves it seems there is still a lot to be garned e
fromi mcreasrng the size of the ensemble beyond 40 members Certalnly itis cléar fromthe
_figures that for higher forecast moments itis necessary to have many more members in

-.\orderto reduce the samphng problem6 e e e B




6.8 . Comparison of bred Vs, random mma/ perturbatlons

Finally, we compare the ettectlveness of raridom and bred lnrtral perturbatrons The
random perturbatrons are created by linearly comblnlng difference fields between .
randomly selected analyses with randorn weights. Toth and Kalnay (1993) showed that
- 2-member bred ensembles outperformed slmllarly sized. ensembles with random initial -
“perturbations in terms of ensemble mean scores. As indicated in Table 5, thisis also true

for 10—member ensembles. The difference in the performance of ensembles with random =

and bred perturbatlons is even larger for the error forecasts. The advantage of bred
. perturbations is moré pronounced over: the winter “hemisphere, where barocllnrc~
’ lnstabllrtres have posslbly a greater contribution to lnltral errors.

/7. 'OPERATIONAL IMPLEM ENTATION

The initial operational ensemble contrguratron |mplemented at. NMC in December;
1992 consisted one pair-of bred perturbed forecasts, one T126 and a T62 tontrol forecast,
. plusai2 hour delayed oontrol forecast (Tracton and Kalnay, 1993) All forecasts initiatedin
‘the most recent. 48- hours were included, making an ensemble of 14 valid for 10 days.
Based on the experlmental results presented in the previous sections, and following the
installation at NMC of a new Cray Ce0 supercomputer the ensemble forecasting system
was upgraded on 30 March 1994. In‘addition-to the T62 and T126. oontrol forecasts, 5bred
pairs of forecasts are run at 00Z and two’ pairs at 127, and all the forecasts are extended to
16 days. The new conflguratlon amounts to. 17 individual ensemble members every day.
‘When the forecasts from the last two days are also consrdered the total number of
ensemble members valid for two 'weeks is 46 (see Flg 12 and also Tracton, 1994) '
. ‘Based onthe results of section 6.2, the size of the initial perturbationsissetat 12.5%
and 25% of the total rms variance in the NH and SH respectlvely (During SH summer, the v

~ perturbation size there is reduced to 12.5% rms variance.) In the fegional rescaling
procedure, the krvnetrc energy of the flow (rather than the previously used rms
‘streamfunction norm) ‘is applied. - We use 24-hour breeding cycles, and the bred
* perturbations are determined as the difference between two perturbed ensemble forecasts
at 24-hour lead time. It shoutd be noted that with this procedure the generation of bred.
- perturbatrons is performed at no cost beyond that of running the ensemble forecasts

L themselves (see Fig. 5 ) Prellmlnary results from the'new operational ensemble system

o support the experimental results’ reported in this paper. A detalled evaluatlon of the new
: system is in progress: and wrll be reported separately -

8. CONCLUSIONS

6Tracton ,(personal communication, -1993) ‘also pointed out that in the .t-'tlg—m:ember -

“ ensemble system that was operational earlier at NMC, the average of 4 of the latest forecasts was -

enough to attain most of the skill improvement, but that the reliability estlmates lmproved further
o when all 14 forecasts were consrdered in the 6—-10 days forecast range e : : '



| Inthis paper dlfferent aspects of ensemble forecastlng were examlned Flrst lt was
emphasrzed that the perturbations applied to the control initial state of the atmosphere
(analysrs) must be chosen in the directions of possrble growmg errorsin the analysis. Using

Lorenz error growth equatlon we showed that if the perturbatrons project on the analysis

errors, averaging pairs of perturbed forecasts: results in a nonlmear fllterrng of forecast
- errors. . On the other hand,’ if the initial perturbatlons do not proj ject on the errors in the
analysis, the same nonlinear processes can also result| in lncreased errors. We argued that

- the analyS|s errors are Composed notonly by random errors as assumed in the operational- -

statistical interpolation methods, but also byfast growmg “errors of the day” introduced by
the successive use of dynamlcal short—range forecasts as first guess flelds within: the
‘analysis cycle.. ' : : '
: The growing errors in the analysrs cycle develop as perturbatrons upon the evolvrng
- true state of the atmosphere. The perturbations (i.e., the analysis errors), carried forwardin °

 the first guess forecasts, are scaled down at regular mtervals by the use of observations. L

- However, because ofthelnhomogeneous dlstrlbutlon of observations it seems possible for

some errors in the analysis to grow without suppressron by observational data Examples

- 4 ofthls can be found overthe oceans and the SH, where radlosonde datais scarce. Dueto

N this process, growing errors associated with the changlng state of the atmosphere develop‘
W|th|n the analysls cycle and dominate subsequent forecast error: growth. _
' We argued that these errors or perturbatlons can be well estimated by the method of

“breedlng growing modes”, ‘which simulates the development of growing érrors in the :

- analysis cycle. Ina breeding cycle the difference field between two nonlinear forecasts is
carried fon/vard (and- scaled down at regular lntervals) upon:the evolving . atmospherlc
analysis f|elds By construction, the bred modes are superposxtlons of the leadrng localime

'dependent) Lyapunov vectors (LLVs) of the atmosphere Breedlng cycles with different

- tnlttal perturbations converge after a few days to a subspace of perturbations that

comprlses the leading local (in phase space) Lyapunov vectors of the atmosphere.” The .

- uniquerole played by the leading LLVsin analysrs/forecastmg was emphasrzed by pointing ~
Loout that all linear perturbatlons after a'‘transient period of 3—4 days assume the shape of
y leadfng LLVs. Inany bred perturbatton the werght on the individual leadlng LLVsis random,
~ determined by how the preceedlng perturbation projécts: on the dlfferent LLVs atthat time
- and also on the lmpact of smaller scale stochastic forcing (convectlon) on the dominant
barocllnlc processes It was shown that perturbatlons from independent breeding cycles

R ~are quasx—orthogonalwrthout the |ntroduct|on ofany constraint.-For these reasons the bred

perturbations- lend themselves as good candldates to be used as lnmal ensemble_ -

'perturbatlons o : - ~ |
' The growing component of the regtonally varylng uncertalnty in the analysrs was

measured as’ the dlfference between parallel analysrs cycles The average difference field o

o _ls then used asa mask in the: regularrescaling process ofthe bred modes toi insurethatthe ., -

| lnltfal ensemble perturbatlons have a spatlal dlstnbutlon of amplltudes srmrlarto that of the

S



: analysrs errors. Each bred perturbatlon is- both added to'and subtracted from the control o
analysis. =~ : : : ' : : :

Results trom 10—member experlmental ensembles lndlcate that for short range’

forecasts the optlmal size of the initial perturbations is about the same as the estimated size -

of analysis errors. For longertorecasts the optimal size is somewhat larger presumably o

because of the presence of medel deﬂmencres which generate additional forecast errors.-
: We showed that for medium range forecastrng the mean of the bred ensemble has
' sklll superior to that of (1) a double horizontal resolution control; (2) a control smoothed
optimally; and (3) an ensemble initiated with’random perturbatlons We also, pointed out-
that ensemble averaging removes the unpredictable components of the flow while leaving
the predlctable part vntually intact. These results attest that the bred ensemble mean offers.
an economic way for improving the control forecast and thus can replace the control as our ,
best estimate of the future state of the atmosphere \ «

- Higher moments of the probablllty distribution of future states should ‘also be-
estimated through ensemble forecasting. - For, limited- samples, we 'showed that bred:
ensemble spread correlated well with forecast error both'in space and in time, surpassing
again. the performance of randomly generated ensembles This information about the
rellablllty of the forecasts s especially - critical at longer lead tlmes where model
_ pen‘ormance is.known to be case dependent,
o Thelmprovementmtorecastsklllat and beyond7daysleadtlmes (0.04-0.111in AC)
: together with a robust estimate of forecast reliability (~0.6 temporal correlatlon between’
ensemble spread and forecast errors) indicates that the bred ensemble system has the ..
: potentlal of extending ‘weather outlooks” into the second forecast week. To capitalize on

B _this potential, NMC started on 30 March 1994 an ensemble forecastmg systemn with 14

perturbed (bred) and 3 control forecasts, gach extending out to16 daysinleadtime. When .
~all forecasts initiated within the past 48 hours are consrdered there is a 46—member
‘énserble valid for two weeks available every day. . _
‘ " There has been much discussion recently both at scientific. meetmgs and in the
lrterature about the properties and ‘relative merits of bred modes and optimal vectors.
’Desplte the many differences listed in section 4we would like to emphasize that both types
- of perturbations represent a subspace of possible. growrng perturbations. The adjoint
,technlque used. to compute the: optlmal vectors can be’ supplemented wrth drtferent
constraints that will make the optlmal perturbations more desirable (and hence slower
growing or “sub—optrmal”) as initial ensemble perturbatlons For example Errico and

Ehrendorfer (1995) used a norm that emphasizes the larger scales and ensures balanced o

_ perturbatlons Houtekamer (1995) further modified thetechnlque to obtain modés that are
' stattstlcally representative of analysis errors in terms of baroclinic shear and spatial error -
magnitude. The spectral wavenumber distribution of the initial optimal perturbations can
also be restricted to larger scales (Hartmann et al., 1995) Wthh has an effect of reducing
-barocllnlcrty that is otherwrse uncharacterlstlc of analy3|s errors. Furthermore work is in

. Drogress at dlﬁerent centers to mclude more thSlcal processes m the tangent linear and SR



_ /adjornt formulatrons of NWP models (e..q:, Zupanski and l\/lesrnger 1995 ) ,
Note that the bred modes are computed using the full physics package of NWP

models atthe highest requrred horizontal resolution. Withoutthe introduction ofany special ©

'constrarn they are well balanced and correspond well with the estimated vertical structure
- of analysrs errors (Houtekamer and Derome 1995)." In vrewofallthe above, rtwrllprobably
-remain a subjective decision which technique one applies operatronally for the generation

of initial. ensemble perturbations. - One may add here that if practical aspects such as

srmplrcrty and computatronal costs are considered, the: breeding method has a clear
: advantage over competing methodologles S

At ECMWF _the adjoint perturbation technrque is used while at FNOC
pre—implementation tests are being carried out with the breeding method (M. A. Rennick,
. personal communication, 1994) At the Atmosphenc Environment Service of Canada
experiments have been carned out with an ensemble system in which, beyond the initial
atmospherrc condrtlons the initial surface parameters, as well as some model parameters

. are also perturbed" (P. Houtekamer, personal cornmunication, 1995.) The- perturbed ‘

ratmospherrc initial condrtrons are derived from runnrng independent analysrs cycles, in
< each of which randomly generated ”measurement errors” .are added to the real
observatronal data. The rndependent analysis cycles can be considered as breeding
. cycles, where, beyond the growrng modes random analysrs errors are also well -

" represented in a statistical sense.:

‘The different’ perturba*ron technrques have vanous potentral advantages Therr
. impact on the quallty of ensemble - forecasts can be evaluated only after a caréful
,comparrson of experimental results. We conclude by notrng that a combrnatron of
ensemble forecasts from - different numerical predrctron centers may give further
" ‘rmprovement to the quality of an ensemble (Harrisonetal., 1995) The benefits from having
a larger number of forecasts, and using drfferent analysrs schemes, forecast models and
perturbatron technrques may all contrrbute to the success of numencal weather predrctron

_ AJknowledaements We greatly apprecrate the many drscussrons and help oﬁered by M. -
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Figure Captions |

- Fig. 1: Example indlcatlng the galn from esemble averaglng in a one—dimensional
: example using Lorenz’ error growth equation. The solid curve is the error of the control -
forecast, the dashed urves are the error ofthe perturbed forecasts, and the dotted curve is
the error of the ensemble mean. E(0)is the lnltlal error of the control torecast and P is the

e amplltude ot the tW|n perturbations.

' Flg 2: Dally ampltﬂcatlon of bred perturbatlons wnth different lnltlal perturbatlon
sizes over the Northern (solid).and Southern (dashed) hemisphere extratropics, computed
~ for-the period February 23-27, 1992, The range of ampllfrcatlon factors for different.
-random (Monte Carlo) balanced perturbations is shown as a vertical dotted line. Average
*“amplification factors for difference fields. between different long short—range forecasts
- .veritying at the initjal ttme of perturbed forecast tntegratlons are also shown thh astar (NH)
_' and a plus sign (SH). ‘ : , : '

‘ Flg 3: An: example of bred perturbatlons at relatlvely small. amplltudes 500 hPa
streamtunctlon perturbation on 15 February 1992 with a perturbation amplltude 0f 0.015%
“total rms variance (equxvalent to ~0. 012m in 500 hPa height.). The perturbatlons at this,

- amplltude are highly nonllnear and are pnmanly assocxated W|th convection. -

Fig.4: 500 hPa streamfunctlon perturbatlon tlelds from three lndependent breedlng
cycles (with hemlspherrcally constant rescaling) for 23 May 1992. The three cycles were
started w1th independent initial perturbations six days earlier. The six marked boxes (see -
panel c) correspond to the areas considered in Table 1. Panels a, b'c correspond to -
breedlng cycles br8 bri2 and br17 in Table 1, respecttvely n

“( - Fig. 5 Schematlcotaselfcontatned breedlng palrot ensembleforecasts Notethat

: breedlng is part of the extended ensem bie forecasts and that. the creation of etﬁcxent initial .
ensemble perturbattons requires no additional computing resources beyond that needed to
run the torecasts themselves : . L

‘ Fig. 6: Relatlve reglonal uncertalnty (for 500 hPa streamfunctlon) present in the ’
control amalysis as determined from the rms - dn‘ference between two analyses from

o lndependently run. NMC analysxs cycles in Apnl May 1882. The analysis cycles were

. practically-identical except that the initial first guesses dn‘fered sllghtly The values shown o
are smoothed and the overall global mean is scaled to one. » :

Flg 7. Forecast Skl” (pattern anomaly correlatlon) ot a 10—member ensemble mean
(solid curve) as afunction of lead time forthe (a a)Northermn and (b) Southern extratroptcs and
for the (c) tropics, for 1992 May 8 June 14. The score for a snngle control forecastis also
shown (dotted curve) ‘ ~ : ST 4

Flg 8 to—member 9—day lead trme ensemble forecast started on. 30 May 1992
Shown are the 500 hPa streamfunctlon fields for (a) ventytng analySIS (b) control forecast



" (c) ensemble meantoreca/s't (d) controlerror (e) ense’rnble mean error (flasin (d)butin
rms. and smoothed (9) forecast of the error (f) as in (e) butin rms and smoothed.

Flg 9: Pattern correlatron between predicted and actual, error in the forecasts

e averaged for the period 6 May-14 June 1992. For further detarls see text

Flg 10 Trme corre!atron of predlcted and actual forecast errors, for 6 May—1 4 June
1982, The correlation values at the 0.1 and 0.001 statrstlcal srgnn‘rcance levels are 0. 264
and 0.501, respectrvely For further details, see text :

Flg 11: Forecast skrll (sohd line), and eva!uatron of the prediction of the spatlal
~ distribution (dashed lines) and ternporal variations (dotted line) in the forecast skill for 1992
May 6~ June 14, as afunction of ensemb!e size, forthe NH (a ) SH (b), andforthetroprcs -
- (c ) Forturther details, see text » : o

Frg 12: Schemattc of the conhguratron of the operatlonal ensemble forecastrng ,
system at NMC. Each horizontal line represents a numerical forecast High resolution, f !

T126 forecasts are marked with ‘heavy lines while the other forecasts are run at 762 .

resolution. Note'that at 00Z there are two control fore¢asts, one started at T126 resolution
“and then truncated to T62 at day 7, whrle the other started ata T62 truncated resolution.. At

- 12Z, the high resolutlon control is truncated after 3 days of integration. Pairs of perturbed

~ forecasts based on the breeding method are marked as B1-B7. For the extended range,
. - forecasts originating in the most recent 48 hours are also used (and are shown on the-

| »frgure)

s



TABLE 1. Sub;ectlve Companson of- perturbations from. twenty lndependent breedlng'
cycles; 1992 May 23. Regional modes in three areas over both the Northern and Southern
Hemispheres, marked with boxes in Fig. 4c and numbered correspondingly from left to -
r@htamcompamd ﬁanmdemandha%wdesvewsmﬂamoﬁmhncwﬂeT7apMsor‘
minus srgn appears dependlng on. the s:gn of the mode : , ,

. Table 1

NH | NH | NH | [sH]|SsH]|SH e = f
#ol w2 [ #3 | L# | s | #s = . . :

A

br3 | o« =] =] T I

bra. ~ | 1 %+ .,‘l g -

br5 - + _.

R

br7 - N SR R

brs | +| | <] | -]+ .

br9' “ = = S R R

ERTIRE E E R N A e

bri1 - f f= .1 - =1 . + + T

bri2 [ = | | T+

br13 ] + | | i -’ S

br14a |/ R I -

bris e o= e L A

br1s . e v' . ".:‘  o ‘_:-

br17- | o+ |+ R  ,+' +

brig. | - | 1~ N T

br1g N

YT R N R e R

Total | 12 | 11 | 14 | 11| 12| 11




: TABLE2 Companson of ensembles generated bysmgle bred perturbatxons(l e. centermg C
individual perturbatlons on control analysis, singlés) . and thoseé generated by ,
positive-negative pairs of perturbations (pairs) for 1992 May 23-28, with 5/10% initial -
\perturbatlons forthe NH/SH. (a) PAC skill scores at day 6; (b) Comparatlve verification'as -
a functlon of lead tlme NH/SH comblned , R o : :

a)‘ , | 'QCVo‘nt'rQl‘ | . .Singles“‘v | Pairs
NH . ces0 . 887 .80
SH - Cosl0 s ,..552
© NH/SH Combined 595 _ ".611    o oe22
SETUOE H RIE AV W
LEAD TIME (days) . PAIRS—SINGLES (WINS)
4 7-5
5 9-3
6 10-2




TABLES The effect of the. saze of lnmal perturbatlons on the pen‘ormence of

10-member ensembles for 1992 May 23— June 6. At the different lead times, PAC scores c

are computed for the mean forecast from different ensembles.  Shown is the . relative

‘performance of each perturba’uon size with respect to 10% (NH, panel a) and 20% (SH,-

- panel b) perturbation size, in terms of PAC wins vs. losses (W/L) and averagelmprovement:v
(Al). The best results are ‘highlighted in bold ‘ .4 :

a)  NORTHEANHEMISPHERE

PERTURB. SIZE ‘DAY3 DAY DAY
(% rmsvarlanc_e)_ w/L AL WIL AL W/L _’}A}l

5 | 5.8 e / " 6—6 - | 4-8 o~ -
175”sfe,_'ff?;5; +  7-5 1 4-g -
T R N RO
A S B

'ay: SOUTHEMVHEMBPHERE

~ PERTURB. SIZE_ DAY3,[ -~ DAYE . DAYe . . |
(% tms variance) WL AR WL AL WL AL

e1o'f.”s]f_240.*éi3‘[5—7/ - 3-3 -
25 7-s s sta w . w-4 +

_ _30'} N 7—5 + | "7—4}/‘4._‘+   ~‘ .7;5 |  +
a0 : .‘ 3 —9 s 7 5-_.77:' 3 " e e




TABLE 4. The etfect of optxmal spatlal smoothlng on the control and 10—~ member
erisemble mean forecasts for the period 1992 May 23 —'June 03 W|th 10/20% initial
: perturba’nons forthe NH/SH For further detalls see text : |

‘LEADTWWE' 'oenMALSMOOTHWG»,'  ENSEMBLE ADVANTAGE OVER

- (Days) o (~Triangular truno"at}ion_) S CONTROL RETAINED
© CONTROL ENSEMBLE  PAC % Total
s T - T4 . .02 625
7. 18 Tz osm  ess
e T 0 o2 s0s.

- TABLE 5. Companson of the oontrol forecasts and 10—member randomly generated
- and bred ensembles for1992 May 23 — June 8, 10/20%initial rms amplitude; NH and SH

. . results combined, for days5 (D5) and 9 (DY) lead times. PAC skill score for T126 controlis .

- estimated based on average difference between hlgh and low resolut!on controls forthree -
years. [For further detalts see text ‘ : '

FORECAST',l, FCSTSKML(PAoy,'f SPAﬂALERRORFCSTSKML(PAC)

D5 D9 - D5 D9 -

'Control 16z 859 354 g _:' I .
= Connoxttzs "_}677 T DR  "_t

Random . - 680 .404 . 399 378

Bred ‘]:, B9l 424 480 407
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